Long Path Lemma concerning Connectivity and Independence Number

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Long Path Lemma concerning Connectivity and Independence Number

We show that, in a k-connected graph G of order n with α(G) = α, between any pair of vertices, there exists a path P joining them with |P | ≥ min { n, (k−1)(n−k) α + k } . This implies that, for any edge e ∈ E(G), there is a cycle containing e of length at least min { n, (k−1)(n−k) α + k } . Moreover, we generalize our result as follows: for any choice S of s ≤ k vertices in G, there exists a t...

متن کامل

Complete Minors and Independence Number

Let G be a graph with n vertices and independence number α. Hadwiger’s conjecture implies that G contains a clique minor of order at least n/α. In 1982, Duchet and Meyniel proved that this bound holds within a factor 2. Our main result gives the first improvement on their bound by an absolute constant factor. We show that G contains a clique minor of order larger than .504n/α. We also prove rel...

متن کامل

On an Inequality of Sagher and Zhou concerning Stein’s Lemma

The jth Rademacher function rj on [0, 1), j = 0, 1, 2, . . . , is defined as follows: r0 = 1, r1 = 1 on [0, 1/2) and r1 = −1 on [1/2, 1), r2 = 1 on [0, 1/4) ∪ [1/2, 3/4) and r2 = −1 on [1/4, 1/2) ∪ [3/4, 1), etc. The following is a classical result that can be found in Zygmund [10] (page 213): For every subset E of [0, 1] and every λ > 1, there is a positive integer N such that for all complex-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Electronic Journal of Combinatorics

سال: 2011

ISSN: 1077-8926

DOI: 10.37236/636